
www.manaraa.com

Data Structures for Images on Java

Hans Braxmeier

Department of Applied Information Processing and Department of Stochastics

University of Ulm

Helmholtzstr. 18, D-89069 Ulm, Germany

hans.braxmeier@mathematik.uni-ulm.de

http://www.mathematik.uni-ulm.de/sai/braxmeier/

Abstract. Many data structures for images are limited to dimen-

sion two. Furthermore, common transformations for images are

usually not supported (eÆciently). In this paper, eÆcient Java

data structures for images are discussed and their performance is

compared.

Keywords: image processing, data structures, Java

Classi�cation: �rst year of PhD studies

1 Introduction

For medical applications, e.g. in computer tomography, data are often given as

three-dimensional images. Therefore, the image data structures supporting only

two-dimensional images are not suÆcient. For this reason data structures for

images should be independent of the dimension or at least for dimension three.

Furthermore, all commonly image transformations should be possible without

great e�ort. Such image transformations are:

� Subrange: yields a rectangle subset of the image. This is important in

processing parts of an image.

� Re
ection: re
ects the image at the origin. This is, e.g., necessary for

the computation of the autocorrelation of an image.

� Reduction of Dimensions: yields an intersection of the image with a

coordinate plane. This is used for analyzing sections of images, e.g., for

medical purposes.

After an explanation and comparison of four possible image data structures in

Section 2, the results of performance tests are compared in Section 3. In Section 4

related work is discussed and a summary of the results is given in Section 5.

www.manaraa.com

2 Data Structures for Images

In this section, four data structures for images are explained. Their structure as

well as the advantages and shortcomings of these data structures are discussed

with respect to image representation.

In the following examples, assume the minimal values of all coordinates to

be zero.

2.1 Multi-Dimensional Arrays in C

No matter how many dimensions are declared, a multi-dimensional array in C

is one single array. The access to the element with indices x and y of a two-

dimensional array is shown in Figure 1.

pixel [x + y * x-width]

...

Fig 1. Two-dimensional arrays in C

Due to the addressing mechanism, the image transformations, presented in

Section 1, cannot be implemented without running through each element of

the array. But this addressing mechanism can easily be extended to higher

dimensions.

2.2 Multi-Dimensional Arrays in Java

Multi-dimensional arrays in Java are arrays with references to arrays; the indivi-

dual array components may themselves be references to arrays of di�erent lengths

as shown in Figure 2.

pixel [x][y]

...

...

x

y

Fig 2. Two-dimensional arrays in Java

The main disadvantage of this adressing mechanism is the multiple indirec-

tion depending on the dimension of the image, which entails loss of performance.

Also the data structure would be di�erent in structure for di�erent dimensions.

Just as multi-dimensional arrays in C, this data structure does not (directly)

support the mentioned transformations, except re
ecting the image at the y-axis

(reordering the pointers of the vertical array in Figure 2).

www.manaraa.com

2.3 Index Arrays

For every dimension, this addressing mechanism uses an extra array with indices.

The sizes of these arrays correspond to the number of elements of each dimension.

A pixel can be addressed by summing up the indices of all index arrays as shown

in Figure 3.

+

pixel[ind[0][x] + ind[1][y]]x y

ind[0] ind[1]
...

Fig 3. Two-dimensional indexed arrays

This index data structure for images is independent of the dimension of

the image. The more important aspect of this adressing mechanism is that

the discussed transformations can be implemented without running through the

elements. However, in contrast to the the multi-dimensional array in C and

Java, this data structure needs additional space for the index arrays.

2.4 Strides and O�set

As shown in Figure 4, an array with strides and o�set is also based on a one-

dimensional array.

pixel [offset + x * x-stride + y * y-stride]

y-stride x-strideoffset = 0

Fig 4. Two-dimensional arrays with Strides and O�set

The index of the origin is given by the o�set. Strides allow to process a whole

image in a very fast and eÆcient way: if the index of a pixel is known, only one

addition is necessary to calculate the index of the successing pixel, independent

of the dimension. For the direct access one addition and one multiplication

is necessary for each dimension. Index arrays need only as many additions as

dimensions.

Similarly to the index arrays, this data structure is independent of the di-

mension. All the transformations can be implemented without running through

the elements, and the overhead is minimal compared to multi-dimensional arrays

in C or Java and less than the overhead of index arrays.

www.manaraa.com

3 Performance Measurements

In this section the performance of the presented data structures is evaluated. The

attention is payed to index arrays and strided arrays. In both cases, di�erent

methods are implemented to retrieve and modify a pixel:

� Direct access to the used array

� Method access where the coordinates are given as integers

� Method access where the coordinates are given as an integer array

Every method uses an XOR operation between two images of the same size,

which ensures that all pixels of both images are touched. The implementations

are tested on images of di�erent sizes: 2 MB, 20 MB and 200 MB.

All experiments are conducted on a PentiumIII@800MHz, 64KB L1, 512KB

L2, 640MB, SuSE Linux8.0, Kernel2.4.18. and on a SunEnterprise450, 4xUltra

SPARC-II@400MHz, 1152 MB, Solaris 2.8. The programs are tested with the

JavaHotSpot1.3.1 JVM and the g++2.95.3 compiler on the SPARC and, addi-

tionally with the IBMJava1.3.0 JVM/JIT on the PC. Measurements are given

in user times to compare the performance of the implementations as shown in

Figures 5, 6 and 7.

0

2

4

6

8

10

12

14

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on PC

Simple Access with Sun HotSpot JVM
Simple Access with IBM JVM/JIT
Simple Access with gcc Compiler

0

2

4

6

8

10

12

14

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on SPARC

Simple Access with Sun HotSpot JVM
Simple Access with gcc Compiler

Fig 5. Simple Arrays

4 Related Work

Hoscheck [1] implements the index data structure in Java. His main focus is �xed

on rectangular dens and sparse multi-dimensional matrices. Accessing elements

is done by set-and-get methods which causes loss of performance since method

calls are expensive. For image processing, the sparse case is not relevant.

www.manaraa.com

0

50

100

150

200

250

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on PC, Sun HotSpot JVM

Method Access with Array Parameter
Method Access with Integer Parameter

Direct Access

0

50

100

150

200

250

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on SPARC, Sun HotSpot JVM

Method Access with Array Parameter
Method Access with Integer Parameter

Direct Access

Fig 6. Index Arrays

0

50

100

150

200

250

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on PC, Sun HotSpot JVM

Method Access with Array Parameter
Method Access with Integer Parameter

Direct Access

0

50

100

150

200

250

0 50 100 150 200

T
im

e
in

 S
ec

Size in MB

Performance Test Results on SPARC, Sun HotSpot JVM

Method Access with Array Parameter
Method Access with Integer Parameter

Direct Access

Fig 7. Arrays with Strides and O�set

5 Summary and Conclusion

In this paper, di�erent image operations and four data structures for images

were analyzed. The performance of every implementation was tested.

Figure 5 shows that for both the gcc compiler and the IBM JVM/JIT, the

time di�erence is nearly constant for every image size. The small di�erence is

only a result of the compilation through the IBM JIT. Figure 5 shows also that

it is advisable to use the IBM JVM/JIT on PCs instead of the Sun HotSpot

JVM. As it can be seen in Figures 6 and 7 it is obviously that direct access using

arrays with strides and o�set is the fastest implementation.

Acknowledgment

I would like to thank Johannes Mayer for the helpful discussions and ideas.

References

[1] W. Hoschek: Uniform, Versatile and EÆcient Dense and Sparse Multi-

Dimensional Arrays. Preprint, CERN, 2000 available at

http://cern.web.cern.ch/CERN/Divisions/EP/HL/publications/

